lenticular printing

Close-up of the surface of a lenticular print.

Lenticular printing is a technology in which lenticular lenses (a technology that is also used for 3D displays) are used to produce printed images with an illusion of depth, or the ability to change or move as the image is viewed from different angles.

Examples of lenticular printing include prizes given in Cracker Jack snack boxes that showed flip and animation effects such as winking eyes, and modern advertising graphics that change their message depending on the viewing angle. This technology was created in the 1940s but has evolved in recent years to show more motion and increased depth. Originally used mostly in novelty items and commonly called “flicker pictures” or “wiggle pictures,” lenticular prints are now being used as a marketing tool to show products in motion. Recent advances in large-format presses have allowed for oversized lenses to be used in lithographic lenticular printing.[1]


[edit] Process

Lenticular printing is a multi-step process consisting of creating a lenticular image from at least two images, and combining it with a lenticular lens. This process can be used to create various frames of animation (for a motion effect), offsetting the various layers at different increments (for a 3D effect), or simply to show a set of alternate images which may appear to transform into each other. Once the various images are collected, they are flattened into individual, different frame files, and then digitally combined into a single final file in a process called interlacing.

Lenticular printing has been used to produce movie posters, such as this advert for Species II, which morphs between two different character appearances when the angle of viewing changes.

From there the interlaced image can be printed directly to the back (smooth side) of the lens or it can be printed to a substrate (ideally a synthetic paper) and laminated to the lens. When printing to the backside of the lens, the critical registration of the fine “slices” of interlaced images must be absolutely correct during the lithographic or screen printing process or “ghosting” and poor imagery might result. Ghosting also occurs on choosing the wrong set of images for flip.[2]

The combined lenticular print will show two or more different images simply by changing the angle from which the print is viewed. If more (30+) images are used, taken in a sequence, one can even show a short video of about one second. Though normally produced in sheet form, by interlacing simple images or different colors throughout the artwork, lenticular images can also be created in roll form with 3D effects or multi-color changes. Alternatively, one can use several images of the same object, taken from slightly different angles, and then create a lenticular print which shows a stereoscopic 3D effect. 3D effects can only be achieved in a side to side (left to right) direction, as the viewer’s left eye needs to be seeing from a slightly different angle than the right to achieve the stereoscopic effect. Other effects, like morphs, motion, and zooms work better (less ghosting or latent effects) as top-to-bottom effects, but can be achieved in both directions.

There are several film processors that will take two or more pictures and create lenticular prints for hobbyists, at a reasonable cost. For slightly more money one can buy the equipment to make lenticular prints at home. This is in addition to the many corporate services that provide high volume lenticular printing.

There are many commercial end uses for lenticular images, which can be made from PVC, APET, acrylic, and PETG, as well as other materials. While PETG and APET are the most common, other materials are becoming popular to accommodate outdoor use and special forming due to the increasing use of lenticular images on cups and gift cards. Lithographic lenticular printing allows for the flat side of the lenticular sheet to have ink placed directly onto the lens, while high-resolution photographic lenticulars typically have the image laminated to the lens.

Recently, large format (over 2m) lenticular images have been used in bus shelters and movie theaters. These are printed using an oversized lithographic press. Many advances have been made to the extrusion of lenticular lens and the way it is printed which has led to a decrease in cost and an increase in quality. Lenticular images have recently seen a surge in activity, from gracing the cover of the May 2006 issue of Rolling Stone to trading cards, sports posters and signs in stores that help to attract buyers.

The newest lenticular technology is manufacturing lenses with flexo, inkjet and screen-printing techniques. The lens material comes in a roll or sheet which is fed through flexo or offset printing systems at high speed, or printed with UV inkjet machines (usually flat-beds that enable a precise registration). This technology allows high volume 3D lenticular production at low cost.

[edit] Construction

Images are interlaced on the substrate

How a lenticular lens works

Each image is arranged (slicing) into strips, which are then interlaced with one or more similarly arranged images (splicing). These are printed on the back of a piece of plastic, with a series of thin lenses molded into the opposite side. Alternatively, the images can be printed on paper, which is then bonded to the plastic. With the new technology, lenses are printed in the same printing operation as the interlaced image, either on both sides of a flat sheet of transparent material, or on the same side of a sheet of paper, the image being covered with a transparent sheet of plastic or with a layer of transparent, which in turn is printed with several layers of varnish to create the lenses.

The lenses are accurately aligned with the interlaces of the image, so that light reflected off each strip is refracted in a slightly different direction, but the light from all pixels originating from the same original image is sent in the same direction. The end result is that a single eye looking at the print sees a single whole image, but two eyes will see different images, which leads to stereoscopic 3D perception.

[edit] Types of lenticular prints

There are three distinct types of lenticular prints, distinguished by how great a change in angle of view is required to change the image:

Transforming prints
Here two or more very different pictures are used, and the lenses are designed to require a relatively large change in angle of view to switch from one image to another. This allows viewers to easily see the original images, since small movements cause no change. Larger movement of the viewer or the print causes the image to flip from one image to another. (The “flip effect”.)
Animated prints
Here the distance between different angles of view is “medium”, so that while both eyes usually see the same picture, moving a little bit switches to the next picture in the series. Usually many sequential images would be used, with only small differences between each image and the next. This can be used to create an image that moves (“motion effect”), or can create a “zoom” or “morph” effect, in which part of the image expands in size or changes shape as the angle of view changes. The movie poster of the film Species II, shown in this article, is an example of this technique.
Stereoscopic effects
Here the change in viewing angle needed to change images is small, so that each eye sees a slightly different view. This creates a 3D effect without requiring special glasses.

[edit] Motorized lenticular

The basic idea of motorized lenticular displays is simple. With static (non-motorized) lenticular, the viewer either moves the piece or moves past the piece in order to see the graphic effects. With motorized lenticular, a motor moves the graphics behind the lens, enabling the graphic effects while both the viewer and the display remain stationary.

[edit] History of lenticular image technology

Images that change when viewed from different angles predate the development of lenticular lenses. In 1692 G. A. Bois-Clair, a French painter, created paintings containing two distinct images, with a grid of vertical laths in front.[3] Different images were visible when the work was viewed from the left and right sides.

Saturnalia record with lenticular label that switches from “Magical love” to a logo.

Han-O-Disc record with diffraction grating ‘Rainbow’ film (outside ring), color shifting Rowlux (middle ring) and “silver balls” Rowlux film (center of record).

Han-O-Disc manufactured for Light Fantastic with metal flake outside and Dufex process print within.

Lenticular images were popularized from the late 1940s to the mid-1980s by the Vari-Vue company.[4] Early products included animated political campaign badges with the slogan “I Like Ike!” and animated cards that were stuck on boxes of Cheerios.[4] By the late sixties the company marketed about two thousand stock products including twelve inch square moving pattern and color sheets, large images (many religious), and a huge range of novelties including badges. The badge products included the Rolling Stones’ tongue logo and an early Beatles badge with pictures of the ‘fab four’ on a red background.

Some notable lenticular prints from this time include the limited-edition cover of the Rolling Stones’ Their Satanic Majesties Request, and Saturnalia‘s Magical Love, a picture disk with a lenticular center. Several magazines including Look and Venture published issues in the 1960s that contained lenticular images. Many of the magazine images were produced by Crowle Communications (also known as Visual Panographics). Images produced by the company ranged from just a few millimeters to 28 by 19.5 inches.

The panoramic cameras used for most of the early lenticular prints were French-made and weighed about 300 pounds. In the 1930s they were known as “auto-stereo cameras”. These wood and brass cameras had a motorized lens that moved in a semicircle around the lens’ nodal point. Sheet transparency film with the lenticular lens overlay was loaded into special dark slides (about 10×15 inches) and these were then inserted into the camera. The exposure time was several seconds long, giving time for the motor drive to power the lens around in an arc.[citation needed]

A related product produced by a small company in New Jersey was Rowlux. Unlike the Vari-Vue product, Rowlux used a microprismatic lens structure made by a process they patented in 1972,[5] and no paper print. Instead, the plastic (Polycarbonate, flexible PVC and later PETG) was dyed with translucent colors and the film was usually thin and flexible (from 0.002″ in thickness).

Lenticular arrays are also used for 3D television (autostereoscopic, enabling the 3D perception without glasses), and number of prototypes have been shown in 2009 2010 by major companies such as Philips and LG. They are using cylindrical lenses slanted to the vertical, or spherical lenses arranged as a honeycomb which provides a better resolution.

While not a true lenticular, the Dufex Process (Manufactured by F.J. Warren Ltd.)[6] does use a form of lens structure to animate the image. The process consists of a metallic foil imprinted by litho printing with the image. The foil is than laminated to a thin sheet of card stock that has had a thick layer of wax coated upon it. The heated lamination press has the Dufex embossing plate on its upper platen. The plate has been engraved with angled ‘lenses’ at different angles so designed as to match the artwork and reflect light at different intensities depending on angle of view.

[edit] Manufacturing process

Designing and manufacturing a lenticular product requires a sound knowledge of optics, binocular vision, computing, the graphic chain, and also stringency in work and precision throughout the manufacturing process.

[edit] Printing

Creation of lenticular images in volume requires printing presses that are adapted to print on sensitive thermoplastic materials. Lithographic offset printing is typically used, to ensure the images are good quality. Printing presses for lenticulars must be capable of adjusting image placement in 10 µm steps, to allow good alignment of the image to the lens array.

Typically, ultravioletcured inks are used. These dry very quickly by direct conversion of the liquid ink to a solid form, rather than by evaporation of liquid solvents from a mixture. Powerful (400W per sq. in) ultraviolet (UV) lamps are used to rapidly cure the ink. This allows lenticular images to be printed at high speed.

In some cases, electron beam lithography is used instead. The curing of the ink is then initiated directly by an electron beam scanned across the surface.

[edit] Defects

[edit] Design defects

Double images on the relief and in depth

Double images are usually caused by an exaggeration of the 3-D effect from angles of view or an insufficient number of frames. Poor design can lead to doubling, small jumps, or a fuzzy image, especially on objects in relief or in depth. For some visuals, where the foreground and background are fuzzy or shaded, this exaggeration can prove to be an advantage. In most cases, the detail and precision required do not allow this.

Image ghosting

Ghosting occurs due to poor treatment of the source images, and also due to transitions where demand for an effect goes beyond the limits and technical possibilities of the system. This causes some of the images to remain visible when they should disappear. These effects can depend on the lighting of the lenticular print.

[edit] Prepress defects

Synchronisation of the print (master) with the pitch

Also known as “Banding”. Poor calibration of the material can cause the passage from one image to another to not be simultaneous over the entire print. The image transition progresses from one side of the print to the other, giving the impression of a veil or curtain crossing the visual. This phenomenon is felt less for the 3-D effects, but is manifested by a jump of the transverse image. In some cases, the transition starts in several places and progresses from each starting point towards the next, giving the impression of several curtains crossing the visual, as described above.

Discordant harmonics

This phenomenon is unfortunately very common, and is explained either by incorrect calibration of the support or by incorrect parametrisation of the prepress operations. It is manifested in particular by streaks that appear parallel to the lenticules during transitions from one visual to the other.

[edit] Printing defects

Colour synchronisation

One of the main difficulties in lenticular printing is colour synchronisation. The causes are varied, they may come from a malleable material, incorrect printing conditions and adjustments, or again a dimensional differential of the engraving of the offset plates in each colour.

This poor marking is shown by doubling of the visual; a lack of clarity; a streak of colour or wavy colours (especially for four-colour shades) during a change of phase by inclination of the visual.

Synchronisation of parallelism of the printing to the lenticules

The origin of this problem is a fault in the printing and forcibly generates a phase defect. The passage from one visual to another must be simultaneous over the entire format. But when this problem occurs, there is a lag in the effects on the diagonals. At the end of one diagonal of the visual, we have one effect, and at the other end we have another.


In most cases, the problem comes from imprecise cutting of the material, as explained below. Nevertheless, poor printing and rectification conditions may also be behind it.

In theory, for a given angle of observation, one and the same visual must appear, for the entire batch. As a general rule, the angle of vision is around 45°, and this angle must be in agreement with the sequence provided by the master. If the images have a tendency to double perpendicularly (for 3-D) or if the images provided for observation to the left appear to the right (top/bottom), there is a phasing problem.

[edit] Cutting defects

Defects in the way the lenticular lens is cut lead to phase errors between the lens and the image.

Two examples, taken from the same production batch:

First image

Second image

The first image shows a cut which removed about 150 µm of the first lens, and which shows irregular cutting of the lenticular lenses. The second image shows a cut which removed about 30 µm of the first lens. Defects in cutting such as these lead to a serious phase problem. In the printing press the image being printed is aligned relative to the edges of the sheet of material. If the sheet is not always cut in the same place relative to the first lenticule, a phase error is introduced between the lenses and the image slices.

[edit] See also

  • Lenticular lens, the technology used in lenticular printing and for 3D displays
  • Integral imaging, a broader concept that includes lenticular printing
  • Autostereoscopy, any method of displaying stereoscopic images without the use of glasses
  • Parallax barrier, another technology for displaying stereoscopic images without the use of glasses

[edit] Notes and references

  1. ^ O’Brien, Katherine (2006). “As big as all outdoors”. American Printer (August 1, 2006). Retrieved 2008-06-04. 
  2. ^ How to Prevent Ghosting in Lenticular Printing
  3. ^ Oster, Gerald (1965). “Optical Art” (subscription required). Applied Optics 4 (11): 1359–69. doi:10.1364/AO.4.001359. 
  4. ^ a b Lake, Matt (1999-05-20). “An art form that’s precise but friendly enough to wink”. New York Times. Retrieved 2008-06-04. 
  5. ^ US patent 3689346, Rowland, William P., “Method for producing retroreflective material”, issued 1972-09-05, assigned to Rowland Development Corp. 
  6. ^ “F.J. Warren Ltd”. Kompass UK. Retrieved 2008-06-04. 
  • Bordas Encyclopedia: Organic Chemistry (French).
  • Sirost, Jean-Claude (2007). L’Offset : Principes, Technologies, Pratiques (in French) (2nd ed.). Dunod. ISBN 2-10-051366-4. 
  • Okoshi, Takanori Three-Dimensional Imaging Techniques Atara Press (2011), ISBN 978-0-9822251-4-1

[edit] External links

This article uses material from the Wikipedia article lenticular printing, which is released under the Creative Commons Attribution-Share-Alike License 3.0.

3D Printing

An ORDbot Quantum 3D printer

Timelapse video of a hyperboloid object print (made of PLA) using a RepRap “Prusa Mendel” 3D printer for molten polymer deposition

Additive manufacturing or 3D printing[1] is a process of making a three-dimensional solid object of virtually any shape from a digital model. 3D printing is achieved using an additive process, where successive layers of material are laid down in different shapes.[2] 3D printing is considered distinct from traditional machining techniques, which mostly rely on the removal of material by methods such as cutting or drilling (subtractive processes).

A materials printer usually performs 3D printing processes using digital technology. Since the start of the twenty-first century there has been a large growth in the sales of these machines, and their price has dropped substantially.[3]

The technology is used in jewelry, footwear, industrial design, architecture, engineering and construction (AEC), automotive, aerospace, dental and medical industries, education, geographic information systems, civil engineering, and many other fields.


[edit] Terminology

The term additive manufacturing refers to technologies that create objects through a sequential layering process. Objects that are manufactured additively can be used anywhere throughout the product life cycle, from pre-production (i.e. rapid prototyping) to full-scale production (i.e. rapid manufacturing), in addition to tooling applications and post-production customization.

In manufacturing, and machining in particular, subtractive methods are typically coined as traditional methods. The very term subtractive manufacturing is a retronym developed in recent years to distinguish it from newer additive manufacturing techniques. Although fabrication has included methods that are essentially “additive” for centuries (such as joining plates, sheets, forgings, and rolled work via riveting, screwing, forge welding, or newer kinds of welding), it did not include the information technology component of model-based definition. Machining (generating exact shapes with high precision) has typically been subtractive, from filing and turning to milling and grinding.

[edit] General principles

3D model slicing

[edit] Modeling

Additive manufacturing takes virtual blueprints from computer aided design (CAD) or animation modeling software and “slices” them into digital cross-sections for the machine to successively use as a guideline for printing. Depending on the machine used, material or a binding material is deposited on the build bed or platform until material/binder layering is complete and the final 3D model has been “printed.” It is a WYSIWYG process where the virtual model and the physical model are almost identical.

A standard data interface between CAD software and the machines is the STL file format. An STL file approximates the shape of a part or assembly using triangular facets. Smaller facets produce a higher quality surface. PLY is a scanner generated input file format, and VRML (or WRL) files are often used as input for 3D printing technologies that are able to print in full color.

[edit] Printing

To perform a print, the machine reads the design from an .stl file and lays down successive layers of liquid, powder, paper or sheet material to build the model from a series of cross sections. These layers, which correspond to the virtual cross sections from the CAD model, are joined together or automatically fused to create the final shape. The primary advantage of this technique is its ability to create almost any shape or geometric feature.

Printer resolution describes layer thickness and X-Y resolution in dpi (dots per inch),[citation needed] or micrometres. Typical layer thickness is around 100 micrometres (0.1 mm), although some machines such as the Objet Connex series and 3D Systems’ ProJet series can print layers as thin as 16 micrometres.[4] X-Y resolution is comparable to that of laser printers. The particles (3D dots) are around 50 to 100 micrometres (0.05–0.1 mm) in diameter.

Construction of a model with contemporary methods can take anywhere from several hours to several days, depending on the method used and the size and complexity of the model. Additive systems can typically reduce this time to a few hours, although it varies widely depending on the type of machine used and the size and number of models being produced simultaneously.

Traditional techniques like injection moulding can be less expensive for manufacturing polymer products in high quantities, but additive manufacturing can be faster, more flexible and less expensive when producing relatively small quantities of parts. 3D printers give designers and concept development teams the ability to produce parts and concept models using a desktop size printer.

[edit] Finishing

Though the printer-produced resolution is sufficient for many applications, printing a slightly over sized version of the desired object in standard resolution, and then removing material with a higher-resolution subtractive process can achieve greater precision.

Some additive manufacturing techniques are capable of using multiple materials in the course of constructing parts. Some are able to print in multiple colors and color combinations simultaneously. Some also utilize supports when building. Supports are removable or dissolvable upon completion of the print, and are used to support overhanging features during construction.

[edit] Additive processes

Rapid prototyping worldwide[5]

The Audi RSQ was made with rapid prototyping industrial KUKA robots

Several different 3D printing processes have been invented since the late 1970s. The printers were originally large, expensive, and highly limited in what they could produce.[6]

A number of additive processes are now available. They differ in the way layers are deposited to create parts and in the materials that can be used. Some methods melt or soften material to produce the layers, e.g. selective laser sintering (SLS) and fused deposition modeling (FDM), while others cure liquid materials using different sophisticated technologies, e.g. stereolithography (SLA). With laminated object manufacturing (LOM), thin layers are cut to shape and joined together (e.g. paper, polymer, metal). Each method has its own advantages and drawbacks, and some companies consequently offer a choice between powder and polymer for the material from which the object is built.[7] Some companies use standard, off-the-shelf business paper as the build material to produce a durable prototype. The main considerations in choosing a machine are generally speed, cost of the 3D printer, cost of the printed prototype, and cost and choice of materials and color capabilities.[8]

Printers that work directly with metals are expensive. In some cases, however, less expensive printers can be used to make a mould, which is then used to make metal parts.[9]

Type Technologies Materials
Extrusion Fused deposition modeling (FDM) Thermoplastics (e.g. PLA, ABS), eutectic metals, edible materials
Wire Electron Beam Freeform Fabrication (EBF3) Almost any metal alloy
Granular Direct metal laser sintering (DMLS) Almost any metal alloy
Electron beam melting (EBM) Titanium alloys
Selective heat sintering (SHS)[citation needed] Thermoplastic powder
Selective laser sintering (SLS) Thermoplastics, metal powders, ceramic powders
Powder bed and inkjet head 3d printing, Plaster-based 3D printing (PP) Plaster
Laminated Laminated object manufacturing (LOM) Paper, metal foil, plastic film
Light polymerised Stereolithography (SLA) photopolymer
Digital Light Processing (DLP) photopolymer

[edit] Extrusion deposition

Fused deposition modeling: 1 – nozzle ejecting molten plastic, 2 – deposited material (modeled part), 3 – controlled movable table

Fused deposition modeling (FDM) was developed by S. Scott Crump in the late 1980s and was commercialized in 1990 by Stratasys.[10]

Fused deposition modeling uses a plastic filament or metal wire that is wound on a coil and unreeled to supply material to an extrusion nozzle, which turns the flow on and off. The nozzle heats to melt the material and can be moved in both horizontal and vertical directions by a numerically controlled mechanism that is directly controlled by a computer-aided manufacturing (CAM) software package. The model or part is produced by extruding small beads of thermoplastic material to form layers as the material hardens immediately after extrusion from the nozzle. Stepper motors or servo motors are typically employed to move the extrusion head.

Various polymers are used, including acrylonitrile butadiene styrene (ABS), polycarbonate (PC), polylactic acid (PLA), PC/ABS, and polyphenylsulfone (PPSU).

FDM has some restrictions on the shapes that may be fabricated. For example, FDM usually cannot produce stalactite-like structures, since they would be unsupported during the build. These have to be avoided or a thin support may be designed into the structure which can be broken away during finishing processes.

[edit] Granular materials binding

The CandyFab granular printing system uses heated air and granulated sugar to produce food-grade art objects.

Another 3D printing approach is the selective fusing of materials in a granular bed. The technique fuses parts of the layer, and then moves the working area downwards, adding another layer of granules and repeating the process until the piece has built up. This process uses the unfused media to support overhangs and thin walls in the part being produced, which reduces the need for temporary auxiliary supports for the piece. A laser is typically used to sinter the media into a solid. Examples include selective laser sintering (SLS), with both metals and polymers (e.g. PA, PA-GF, Rigid GF, PEEK, PS, Alumide, Carbonmide, elastomers), and direct metal laser sintering (DMLS).

Selective Laser Sintering (SLS) was developed and patented by Dr. Carl Deckard and Dr. Joseph Beaman at the University of Texas at Austin in the mid-1980s, under sponsorship of DARPA.[11] A similar process was patented without being commercialized by R. F. Housholder in 1979.[12]

Electron beam melting (EBM) is a similar type of additive manufacturing technology for metal parts (e.g. titanium alloys). EBM manufactures parts by melting metal powder layer by layer with an electron beam in a high vacuum. Unlike metal sintering techniques that operate below melting point, EBM parts are fully dense, void-free, and very strong.[13][14]

Another method consists of an inkjet 3D printing system. The printer creates the model one layer at a time by spreading a layer of powder (plaster, or resins) and printing a binder in the cross-section of the part using an inkjet-like process. This is repeated until every layer has been printed. This technology allows the printing of full color prototypes, overhangs, and elastomer parts. The strength of bonded powder prints can be enhanced with wax or thermoset polymer impregnation.

[edit] Lamination

In some printers, paper can be used as the build material, resulting in a lower cost to print. During the 1990s some companies marketed printers that cut cross sections out of special adhesive coated paper using a carbon dioxide laser, and then laminated them together.

In 2005, Mcor Technologies Ltd developed a different process using ordinary sheets of office paper, a Tungsten carbide blade to cut the shape, and selective deposition of adhesive and pressure to bond the prototype.[15]

There are also a number of companies selling printers that print laminated objects using thin plastic and metal sheets.

[edit] Photopolymerization

Stereolithography apparatus

Stereolithography was patented in 1987 by Chuck Hull. Photopolymerization is primarily used in stereolithography (STL) to produce a solid part from a liquid.

In digital light processing (DLP), a vat of liquid polymer is exposed to light from a DLP projector under safelight conditions. The exposed liquid polymer hardens. The build plate then moves down in small increments and the liquid polymer is again exposed to light. The process repeats until the model has been built. The liquid polymer is then drained from the vat, leaving the solid model. The EnvisionTec Ultra[16] is an example of a DLP rapid prototyping system.

Inkjet printer systems like the Objet PolyJet system spray photopolymer materials onto a build tray in ultra-thin layers (between 16 and 30 microns) until the part is completed. Each photopolymer layer is cured with UV light after it is jetted, producing fully cured models that can be handled and used immediately, without post-curing. The gel-like support material, which is designed to support complicated geometries, is removed by hand and water jetting. It is also suitable for elastomers.

Ultra-small features can be made with the 3D microfabrication technique used in multiphoton photopolymerization. This approach traces the desired 3D object in a block of gel using a focused laser. Due to the nonlinear nature of photoexcitation, the gel is cured to a solid only in the places where the laser was focused and the remaining gel is then washed away. Feature sizes of under 100 nm are easily produced, as well as complex structures with moving and interlocked parts.[17]

Yet another approach uses a synthetic resin that is solidified using LEDs.[18]

[edit] Printers

[edit] Printers for domestic use

RepRap version 2.0 (Mendel)

MakerBot Cupcake CNC

Airwolf 3D AW3D v.4 (Prusa)

There are several projects and companies making efforts to develop affordable 3D printers for home desktop use. Much of this work has been driven by and targeted at DIY/enthusiast/early adopter communities, with additional ties to the academic and hacker communities.[19]

RepRap is one of the longest running projects in the desktop category. The RepRap project aims to produce a free and open source software (FOSS) 3D printer, whose full specifications are released under the GNU General Public License, and which is capable of replicating itself by printing many of its own (plastic) parts to create more machines.[20] Research is under way to enable the device to print circuit boards, as well as metal parts.

Because of the FOSS aims of RepRap, many related projects have used their design for inspiration, creating an ecosystem of related or derivative 3D printers, most of which are also open source designs. The availability of these open source designs means that variants of 3D printers are easy to invent. The quality and complexity of printer designs, however, as well as the quality of kit or finished products, varies greatly from project to project. This rapid development of open source 3D printers is gaining interest in many spheres as it enables hyper-customization and the use of public domain designs to fabricate open source appropriate technology through conduits such as Thingiverse and Cubify. This technology can also assist initiatives in sustainable development since technologies are easily and economically made from resources available to local communities.[21]

The cost of 3-D printers has decreased dramatically between about 2010 and 2012, with machines that used to cost $20,000 costing less than $1,000.[22] For instance, as of 2012, several companies and individuals are selling parts to build various RepRap designs, with prices starting at about €400 / US$500.[23] The price of printer kits vary from US$400 for the open source SeeMeCNC H-1 and US$500 for the Printrbot (both derived from the previous RepRap models), to over US$2000 for the [email protected] 2.0 two-syringe system.[23] The Shark 3D printer comes fully assembled for less than 2k . The open source [email protected] project[24] has developed printers for general use with anything that can be squirted through a nozzle, from chocolate to silicone sealant and chemical reactants. Printers following the project’s designs have been available from suppliers in kits or in pre-assembled form since 2012 at prices in the US$2000 range.[23]

[edit] Printers for commercial and domestic use

The development and hyper-customization of the RepRap-based 3D printers has produced a new category of printers suitable for both domestic and commercial use. The least expensive assembled machine available is the Solidoodle 2, while the RepRapPro’s Huxley DIY kit is reputedly one of the more reliable of the lower-priced machines, at around US$680. There are other RepRap-based high-end kits and fully assembled machines that have been enhanced to print at high speed and high definition. Depending on the application, the print resolution and speed of manufacturing lies somewhere between a personal printer and an industrial printer. A list of printers with pricing and other information is maintained.[23] Most recently delta robots have been utilized for 3D printing to increase fabrication speed further.[25]

[edit] Applications

Three-dimensional printing makes it as cheap to create single items as it is to produce thousands and thus undermines economies of scale. It may have as profound an impact on the world as the coming of the factory did….Just as nobody could have predicted the impact of the steam engine in 1750—or the printing press in 1450, or the transistor in 1950—it is impossible to foresee the long-term impact of 3D printing. But the technology is coming, and it is likely to disrupt every field it touches.

The Economist, in a February 10, 2011 leader[26]

A model (left) was digitally acquired by using a 3D scanner, the scanned data processed using MeshLab, and the resulting 3D model used by a rapid prototyping machine to create a resin replica (right)

An example of 3D printed limited edition jewellery. This necklace is made of glassfiber-filled dyed nylon. It has rotating linkages that were produced in the same manufacturing step as the other parts.

Additive manufacturing’s earliest applications have been on the toolroom end of the manufacturing spectrum. For example, rapid prototyping was one of the earliest additive variants, and its mission was to reduce the lead time and cost of developing prototypes of new parts and devices, which was earlier only done with subtractive toolroom methods (typically slowly and expensively).[27] With technological advances in additive manufacturing, however, and the dissemination of those advances into the business world, additive methods are moving ever further into the production end of manufacturing in creative and sometimes unexpected ways.[27] Parts that were formerly the sole province of subtractive methods can now in some cases be made more profitably via additive ones.

Standard applications include design visualization, prototyping/CAD, metal casting, architecture, education, geospatial, healthcare, and entertainment/retail.

[edit] Industrial uses

[edit] Rapid prototyping

Full color miniature face models produced on a Spectrum Z510 3D Printer

Industrial 3D printers have existed since the early 1980s and have been used extensively for rapid prototyping and research purposes. These are generally larger machines that use proprietary powdered metals, casting media (e.g. sand), plastics, paper or cartridges, and are used for rapid prototyping by universities and commercial companies. Industrial 3D printers are made by companies including Mcor Technologies Ltd, 3D Systems, Objet Geometries, and Stratasys.

[edit] Rapid manufacturing

Advances in RP technology have introduced materials that are appropriate for final manufacture, which has in turn introduced the possibility of directly manufacturing finished components. One advantage of 3D printing for rapid manufacturing lies in the relatively inexpensive production of small numbers of parts.

Rapid manufacturing is a new method of manufacturing and many of its processes remain unproven. 3D printing is now entering the field of rapid manufacturing and was identified as a “next level” technology by many experts in a 2009 report.[28] One of the most promising processes looks to be the adaptation of laser sintering (LS), one of the better-established rapid prototyping methods. As of 2006, however, these techniques were still very much in their infancy, with many obstacles to be overcome before RM could be considered a realistic manufacturing method.[29]

[edit] Mass customization

Companies have created services where consumers can customize objects using simplified web based customization software, and order the resulting items as 3D printed unique objects.[30][31] This now allows consumers to create custom cases for their mobile phones.[32] Nokia has released the 3D designs for its case so that owners can customize their own case and have it 3D printed.[33]

[edit] Mass production

The current slow print speed of 3D printers limits their use for mass production. To reduce this overhead, several fused filament machines now offer multiple extruder heads. These can be used to print in multiple colors, with different polymers, or to make multiple prints simultaneously. This increases their overall print speed during multiple instance production, while requiring less capital cost than duplicate machines since they can share a single controller. Distinct from the use of multiple machines, multi-material machines are restricted to making identical copies of the same part, but can offer multi-color and multi-material features when needed. The print speed increases proportionately to the number of heads. Furthermore, the energy cost is reduced due to the fact that they share the same heated print volume. Together, these two features reduce overhead costs, yet the main cost continues to be the raw filament, which is unchanged.

Many printers now offer twin print heads. However, these are used to manufacture single (sets of) parts in multiple colors/materials.

Few studies have yet been done in this field to see if conventional subtractive methods are comparable to additive methods.

[edit] Domestic and hobbyist uses

As of 2012, domestic 3D printing has mainly captivated hobbyists and enthusiasts and has not quite gained recognition for practical household applications. A working clock has been made[34] and gears have been printed for home woodworking machines[35] among other purposes.[36] 3D printing is also used for ornamental objects. One printer (the [email protected]) includes chocolate in the materials that can be printed. Web sites associated with home 3D printing tend to include backscratchers, coathooks, etc. among their offered prints. The [email protected] gallery includes many objects that lack practical application, but includes examples of practical possibilities, including a flashlight/torch using conductive ink for the electrical circuit, a battery-powered motor, an iPod case, a silicone watch band, and somewhat miscellaneously, a translucent cylinder completely enclosing a brown box, a construct difficult to fabricate any other way.[37]

The open source [email protected] project[24] has developed printers for general use. They have been used in research environments to produce chemical compounds with 3D printing technology, including new ones, initially without immediate application as proof of principle.[38] The printer can print with anything that can be dispensed from a syringe as liquid or paste. The developers of the chemical application envisage that this technology could be used for both in industrial and domestic use. Including, for example, enabling users in remote locations to be able to produce their own medicine or household chemicals.[39][40]

[edit] 3D printing services

Some companies offer on-line 3D printing services open to both consumers and industries.[41] Such services require people to upload their 3D designs to the company website. Designs are then 3D printed using industrial 3D printers and either shipped to the customer or in some cases, the consumer can pick the object up at the store.[42] Some examples of 3D printing services companies are Staples Inc.,[43] Shapeways,[44] Kraftwurx,[45] i.materialise[46], Solid Concepts[47], and Freedom of Creation[48]

[edit] Research into new applications

Future applications for 3D printing might include creating open-source scientific equipment[49] or other science-based applications like reconstructing fossils in paleontology, replicating ancient and priceless artifacts in archaeology, reconstructing bones and body parts in forensic pathology, and reconstructing heavily damaged evidence acquired from crime scene investigations. The technology is even being explored for building construction.

In 2005, academic journals had begun to report on the possible artistic applications of 3D printing technology.[50] By 2007 the mass media followed with an article in the Wall Street Journal[51] and Time Magazine, listing a 3D printed design among their 100 most influential designs of the year.[52] During the 2011 London Design Festival, an installation, curated by Murray Moss and focused on 3D Printing, was held in the Victoria and Albert Museum (the V&A). The installation was called Industrial Revolution 2.0: How the Material World will Newly Materialise.[53]

As of 2012, 3D printing technology has been studied by biotechnology firms and academia for possible use in tissue engineering applications in which organs and body parts are built using inkjet techniques. In this process, layers of living cells are deposited onto a gel medium or sugar matrix and slowly built up to form three-dimensional structures including vascular systems.[54] Several terms have been used to refer to this field of research: organ printing, bio-printing, body part printing,[55] and computer-aided tissue engineering, among others.[56] 3D printing can produce a personalized hip replacement in one pass, with the ball permanently inside the socket and is available in printing resolutions that don’t require polishing.[citation needed]

A proof-of-principle project at the University of Glasgow, UK, in 2012 showed that it is possible to use 3D printing techniques to create chemical compounds, including new ones. They first concept printed chemical reaction vessels, then use the printer to squirt reactants into them as “chemical inks” which would then react.[38] They have produced new compounds to verify the validity of the process, but have not pursued anything with a particular application.[38] They used the [email protected] open source printer, at a reported cost of US$2,000. Cornell Creative Machines Lab has confirmed that it is possible to produce customized food with 3D Hydrocolloid Printing.[57]

The use of 3D scanning technologies allows the replication of real objects without the use of moulding techniques that in many cases can be more expensive, more difficult, or too invasive to be performed, particularly for precious or delicate cultural heritage artifacts[58] where direct contact with the molding substances could harm the original object’s surface. Objects as ubiquitous as smartphones can be used as 3D scanners: Sculpteo unveiled a mobile app at the 2012 Consumer Electronics Show that allows a 3D file to be generated directly via smartphone.[59]

As an example of possible future applications, an open source group emerged in the US in 2012 that was attempting to design a firearm that was downloadable and printable from the Internet.[60] The weapon would still require bullets produced by traditional methods. Calling itself Defense Distributed, the group wants to facilitate “a working plastic gun that could be downloaded and reproduced by anybody with a 3D printer”.[61]

An additional use being developed is building printing, or using 3d printing to build buildings. This could allow faster construction for lower costs, and has been investigated for construction of off-Earth habitats.[62][63]

[edit] Intellectual property

Three different sorts of intellectual property are commonly defined, patent, copyright and trademark. Patents are to do with protecting how something works, and lasts up to about 25 years, depending on the jurisdiction. Copyrights protect artistic works, and generally last the artists life plus 70 years.[64]

Usually, purely functional items, and plans and documents for these items, older than 25 years are usually no longer patented and can be freely copied, scanned and 3D printed.[64]

However, if an item has artistic features, those artistic features are generally considered copyrighted.[64][65] When a feature has both artistic and functional merits, when the question has appeared in US court, the courts have often held the feature is not copyrightable unless it can be separated from the functional aspects of the item.[64]

[edit] Effects of 3D printing

Predictions for future commercial additive manufacturing, starting with today’s infancy period, require manufacturing firms to be flexible, ever-improving users of all available technologies in order to remain competitive. Advocates of additive manufacturing also predict that this arc of technological development will counter globalisation, as end users will do much of their own manufacturing rather than engage in trade to buy products from other people and corporations.[6] The real integration of the newer additive technologies into commercial production, however, is more a matter of complementing traditional subtractive methods rather than displacing them entirely.[66]

[edit] See also

[edit] References

  1. ^ The engineer: The rise of additive manufacturing
  2. ^ “3D Printer Technology – Animation of layering”. Create It Real. Retrieved 2012-01-31. 
  3. ^ Sherman, Lilli Manolis. “3D Printers Lead Growth of Rapid Prototyping (Plastics Technology, August 2004)”. Retrieved 2012-01-31. 
  4. ^ “Objet Connex 3D Printers”. Objet Printer Solutions. Retrieved 2012-01-31. 
  5. ^ D. T. Pham, S. S. Dimov, Rapid manufacturing, Springer-Verlag, 2001, ISBN 1-85233-360-X, page 6
  6. ^ a b Jane Bird (2012-08-08). “Exploring the 3D printing opportunity”. The Financial Times. Retrieved 2012-08-30. 
  7. ^ Sherman, Lilli Manolis (November 15, 2007)). “A whole new dimension – Rich homes can afford 3D printers”. The Economist. 
  8. ^ Wohlers, Terry. “Factors to Consider When Choosing a 3D Printer (WohlersAssociates.com, Nov/Dec 2005)”. 
  9. ^ 3ders.org: Casting aluminum parts directly from 3D printed PLA parts
  10. ^ Chee Kai Chua; Kah Fai Leong, Chu Sing Lim (2003). Rapid Prototyping. World Scientific. p. 124. 
  11. ^ Deckard, C., “Method and apparatus for producing parts by selective sintering”, U.S. Patent 4,863,538, filed October 17, 1986, published September 5, 1989.
  12. ^ Housholder, R., “Molding Process”, U.S. Patent 4,247,508, filed December 3, 1979, published January 27, 1981.
  13. ^ Hiemenz, Joe. “Rapid prototypes move to metal components (EE Times, 3/9/2007)”. 
  14. ^ “Rapid Manufacturing by Electron Beam Melting”. SMU.edu. 
  15. ^ Article in Rapid Today, “3D Printer Uses Standard Paper”, “Rapid Today”, May, 2008
  16. ^ “EnvisionTec Ultra”. EnvisionTec. 
  17. ^ Johnson, R. Colin. “Cheaper avenue to 65 nm? (EE Times, 3/30/2007)”. 
  18. ^ “The World’s Smallest 3D Printer”. TU Wien. 12 September 2011. 
  19. ^ Kalish, Jon. “A Space For DIY People To Do Their Business (NPR.org, November 28, 2010)”. Retrieved 2012-01-31. 
  20. ^ | Computerworld New Zealand
  21. ^ Pearce, Joshua M.; et al. “3-D Printing of Open Source Appropriate Technologies for Self-Directed Sustainable Development (Journal of Sustainable Development, Vol.3, No. 4, 2010, pp. 17–29)”. Retrieved 2012-01-31. 
  22. ^ Disruptions: 3-D Printing Is on the Fast Track – NYTimes.com
  23. ^ a b c d 3ders.org 3D printers list with prices
  24. ^ a b New Scientist magazine: Desktop fabricator may kick-start home revolution, 9 January 2007. Online edition available to subscribers
  25. ^ See for example the Rostock
  26. ^ “Print me a Stradivarius – How a new manufacturing technology will change the world”. Economist Technology. 2011-02-10. Retrieved 2012-01-31. 
  27. ^ a b Vincent & Earls 2011.
  28. ^ Wohlers Report 2009, State of the Industry Annual Worldwide Progress Report on Additive Manufacturing, [create ihttp://www.wohlersassociates.com/ Wohlers Associates], ISBN 0-9754429-5-3
  29. ^ Hopkinson, N & Dickens, P 2006, ‘Emerging Rapid Manufacturing Processes’, in Rapid Manufacturing; An industrial revolution for the digital age, Wiley & Sons Ltd, Chichester, W. Sussex
  30. ^ “The action doll you designed, made real”. makie.me. Retrieved January 18, 2013. 
  31. ^ My Robot Nation
  32. ^ Turn Your Baby’s Cry Into an iPhone Case, Bloomberg Businessweek, 2012-03-10, http://www.businessweek.com/articles/2012-03-10/turn-your-babys-cry-into-an-iphone-case, retrieved 2013-02-20
  33. ^ Nokia backs 3D printing for mobile phone cases, BBC News Online, 2013-02-18, http://www.bbc.co.uk/news/technology-21084430, retrieved 2013-02-20
  34. ^ 3D printed clock and gears
  35. ^ 3D printed planetary gears
  36. ^ Successful Sumpod 3D printing of a herringbone gear
  37. ^ [email protected] gallery of objects made
  38. ^ a b c MD Symes et al., Integrated 3D-printed reactionware for chemical synthesis and analysis, Nature Chemistry 4,349–354 (2012), doi:10.1038/nchem.1313
  39. ^ New Scientist magazine: Make your own drugs with a 3D printer, 17 April 2012. Online edition available to subscribers
  40. ^ Cronin, Lee (2012-04-17). “3D printer developed for drugs” (video interview [5:21]). Glasgow University: BBC News Online. Retrieved 2013-03-06. 
  41. ^ Sterling, Bruce (2011-06-27). “Spime Watch: Dassault Systèmes’ 3DVIA and Sculpteo (Wired, June 27, 2011)”. Retrieved 2012-01-31. 
  42. ^ Vance, Ashlee (2011-01-12). “The Wow Factor of 3-D Printing (The New York Times, January 12, 2011)”. Retrieved 2012-01-31. 
  43. ^ Michael Wolf, Article in Forbes, “3D Printing With Paper At Your Local Office Supply Store? Yep, If Mcor Has Its Way”, “Forbes”, March, 2013
  44. ^ Drell, Lauren. “Everything you wanted to know about 3D printing but were too afraid to ask (mashable.com, February 28, 2012)”. 
  45. ^ “Kraftwurx, more than just a 3D printing service”. 3Ders. November 25, 2011. Retrieved 2012-01-29. 
  46. ^ Evans, John (January 19, 2011). “3D Printing – i.Materialise service offers Titanium”. Design & Motion. Retrieved 2012-01-29. 
  47. ^ http://www.core77.com/blog/materials/real_steel_an_inside_look_at_building_robots_20822.asp
  48. ^ Terdiman, Daniel (2011-06-20). “3D printing creating ‘a whole new world'”. CNET News. Retrieved 2012-01-29. 
  49. ^ Pearce, Joshua M. 2012. “Building Research Equipment with Free, Open-Source Hardware.Science 337 (6100): 1303–1304.open access
  50. ^ Séquin, Carlo H. “Rapid prototyping: a 3d visualization tool takes on sculpture and mathematical forms (Communications of the ACM – 3d hard copy, Volume 48 Issue 6, June 2005, pp. 66–73)”. Retrieved 2012-01-31. 
  51. ^ Guth, Robert A. “How 3-D Printing Figures To Turn Web Worlds Real (The Wall Street Journal, December 12, 2007)”. Retrieved 2012-01-31. 
  52. ^ Bathsheba Grossman’s Quin.MGX for Materialise listed in Time Magazine’s Design 100
  53. ^ Williams, Holly (2011-08-28). “Object lesson: How the world of decorative art is being revolutionised by 3D printing (The Independent, 28 August 2011)”. London. Retrieved 2012-01-31. 
  54. ^ “3D-printed sugar network to help grow artificial liver”, BBC, 2 July 2012.
  55. ^ “Building body parts with 3D printing”, The Engineer, 24 May 2010.
  56. ^ Silverstein, Jonathan. “‘Organ Printing’ Could Drastically Change Medicine (ABC News, 2006)”. Retrieved 2012-01-31. 
  57. ^ “Hydrocolloid Printing”, Cornell Creative, 2012.
  58. ^ Cignoni, Paolo; Scopigno, Roberto (June 2008). “Sampled 3D models for CH applications: A viable and enabling new medium or just a technological exercise?” (PDF). Association for Computing Machinery (ACM) Journal on Computing and Cultural Heritage 1 (1): 1. doi:10.1145/1367080.1367082. 
  59. ^ Isaac, Mike (2012-01-09). “Sculpteo 3-D Printing App Uses Your Mug to Make a Mug”. Wired. Retrieved 2013-03-06. 
  60. ^ Greenberg, Andy (2012-08-23). “‘Wiki Weapon Project’ Aims To Create A Gun Anyone Can 3D-Print At Home”. Forbes. Retrieved 2012-08-27. 
  61. ^ Poeter, Damon (2012-08-24). “Could a ‘Printable Gun’ Change the World?”. PC Magazine. Retrieved 2012-08-27. 
  62. ^ “The World’s First 3D-Printed Building Will Arrive In 2014”. TechCrunch. 2012-01-20. Retrieved 2013-02-08. 
  63. ^ Diaz, Jesus (2013-01-31). “This Is What the First Lunar Base Could Really Look Like”. Gizmodo. Retrieved 2013-02-01. 
  64. ^ a b c d What’s the Deal with copyright and 3D printing? Michael Weinberg JANUARY 2013, Institute for Emerging Innovation
  65. ^ http://www.wired.com/design/2012/05/3-d-printing-patent-law/?utm_source=Contextly&utm_medium=RelatedLinks&utm_campaign=Previous Clive Thompson on 3-D Printing’s Legal Morass] Wired, Clive Thompson 05.30.12 1:43 PM
  66. ^ Albert 2011.

[edit] Bibliography

[edit] Further reading

  • Easton, Thomas A. (November 2008). “The 3D Trainwreck: How 3D Printing Will Shake Up Manufacturing”. Analog 128 (11): 50–63. 
  • Wright, Paul K. (2001). 21st Century Manufacturing. New Jersey: Prentice-Hall Inc.

[edit] External links

This article uses material from the Wikipedia article 3D Printing, which is released under the Creative Commons Attribution-Share-Alike License 3.0.

Innovation Lessons from 3-D Printing – Journal Article

Also known as “additive manufacturing” or “rapid prototyping,” 3-D printing is the printing of solid, physical 3-D objects. Some see 3-D printing and related technologies as having transformative implications. “Just as the Web democratized innovation in bits, a new class of ‘rapid prototyping’ technologies is democratizing innovation in atoms,” Wired magazine’s longtime editor-in-chief, Chris Anderson, stated in his new book Makers: The New Industrial Revolution.

In this article, the authors examine the rapid emergence of a movement called open-source 3-D printing and how it fits into a general trend toward open-source innovation by collaborative online communities. They then discuss how existing companies can respond to open-source innovation if it occurs in their industry.

Click Here For More Information on 3D Printing